Thermocouple and Infrared Sensor-Based Measurement of Temperature Distribution in Metal Cutting
نویسندگان
چکیده
In metal cutting, the magnitude of the temperature at the tool-chip interface is a function of the cutting parameters. This temperature directly affects production; therefore, increased research on the role of cutting temperatures can lead to improved machining operations. In this study, tool temperature was estimated by simultaneous temperature measurement employing both a K-type thermocouple and an infrared radiation (IR) pyrometer to measure the tool-chip interface temperature. Due to the complexity of the machining processes, the integration of different measuring techniques was necessary in order to obtain consistent temperature data. The thermal analysis results were compared via the ANSYS finite element method. Experiments were carried out in dry machining using workpiece material of AISI 4140 alloy steel that was heat treated by an induction process to a hardness of 50 HRC. A PVD TiAlN-TiN-coated WNVG 080404-IC907 carbide insert was used during the turning process. The results showed that with increasing cutting speed, feed rate and depth of cut, the tool temperature increased; the cutting speed was found to be the most effective parameter in assessing the temperature rise. The heat distribution of the cutting tool, tool-chip interface and workpiece provided effective and useful data for the optimization of selected cutting parameters during orthogonal machining.
منابع مشابه
Measurements of temperature distribution using an infrared optical fiber during radiofrequency ablation
In this study, we have measured temperature distribution using infrared optical fibers during radiofrequency ablation (RFA). Infrared radiations generated from the water around inserted electrode are transferred by silver halide optical fibers and are measured by a thermopile sensor. Also, the output voltages of a thermopile sensor are compared with those of the thermocouple recorder. It is exp...
متن کاملPerformance Evaluation of an Infrared Thermocouple
The measurement of the leaf temperature of forests or agricultural plants is an important technique for the monitoring of the physiological state of crops. The infrared thermometer is a convenient device due to its fast response and nondestructive measurement technique. Nowadays, a novel infrared thermocouple, developed with the same measurement principle of the infrared thermometer but using a...
متن کاملInfrared Thermopile Temperature Measurement Technique in Microwave Heating Systems
Temperature measurement in microwave systems is essential for thermally driven processes, namely, catalytic reactions and ceramic sintering. Although, the application of direct thermometry methods, namely, thermocouples, have been commonly articulated in the available literature, however, contacted temperature measurement mechanisms have aroused concerns associated with the disruption of the el...
متن کاملWelding Journal - 1998 September
Quantification of infrared (IR) radiation is a convenient, noncontact method for making the base metal temperature measurements needed for on-line feedback controls. However, the problem of interference from the arc is a complicating factor in applying IR temperature sensing to welding. The objective of this research is to implement and test a top-face, noncontact temperature measurement system...
متن کاملUncertainty of temperature measurements by infrared thermography for metal cutting applications
This paper presents a comprehensive analysis of the uncertainty in the measurement of the peak temperature on the side face of a cutting tool, during the metal cutting process, by infrared thermography. The analysis considers the use of a commercial off-the-shelf camera and optics, typical of what is used in metal cutting research. A physics-based temperature measurement equation is considered ...
متن کامل